Rocking Subdiffusive Ratchets: Origin, Optimization and Efficiency
نویسندگان
چکیده
منابع مشابه
The optimal driving waveform for overdamped, adiabatic rocking ratchets
The optimal driving waveform among a wide class of admissible functions for an overdamped, adiabatic rocking ratchet is shown to be dichotomous. ‘Optimum’ is defined as that which achieves the maximum (or minimum negative) average particle velocity. Implications for the design of ratchets, for example in nanotechnological transport, may follow. The main result is applicable to a general class o...
متن کاملOptimal driving waveform for overdamped, adiabatic rocking ratchets
As a first step in the project of ratchet optimisation, the optimal driving waveform among a wide class of admissible functions for an overdamped, adiabatic rocking ratchet is shown to be dichotomous. ‘Optimum’ is defined as that which achieves the maximum (or minimum negative) average particle velocity. Implications for the design of ratchets, for example in nanotechnological transport, may fo...
متن کاملOn Optimization of Resilient Rocking Cores
The research leading to this paper was prompted by the need to estimate strength and stiffness of Rigid Rocking Cores (RRCs) as essential elements of resilient earthquake resisting structures. While a limited number of such studies have been reported, no general study in terms of physical properties of RRCs, their appendages and adjoining structures have been published. Despite the growing know...
متن کاملEfficiency and current reversals in spatially inhomogeneous ratchets
Efficiency of generation of net unidirectional current in an adiabatically driven symmetric periodic potential system is studied. The efficiency shows a maximum, in the case of an inhomogeneous system with spatially varying periodic friction coefficient, as a function of temperature. The ratchet is not most efficient when it gives maximum current. The direction of current may also be reversed a...
متن کاملOrigin of multiplexing capabilities of multifrequency magnetic ratchets.
Through a combination of theory, numerical simulation, and experiment, we investigate the motion of magnetic beads on the surface of a magnetic ratchet driven by multifrequency fields. Here, we focus on the influence of static forcing terms, which were not included in previous models, and we derive analytical models that show why the static forcing terms are responsible for inducing beads of tw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Modelling of Natural Phenomena
سال: 2013
ISSN: 0973-5348,1760-6101
DOI: 10.1051/mmnp/20138210